

NYISO Climate Change Phase II Study

Internal Update on Climate Cases

July 23, 2020

BOSTON CHICAGO DALLAS DENVER LOS ANGELES MENLO PARK NEW YORK SAN FRANCISCO WASHINGTON, DC • BEIJING • BRUSSELS • LONDON • MONTREAL • PARIS

AG ANALYSIS GROUP

Climate Disruption Case Discussion

Climate Disruption Case Discussion

AG ANALYSIS GROUP Climate Disruption Case Discussion

Climate Disruption Case Modeling

- Climate impacts will be analyzed using a set of climate cases that model impacts to the bulk power system during 30-day modeling periods
- Climate impacts analyzed for winter, summer, and shoulder seasons for the CLCPA and Reference load scenarios from the Climate Change Phase I study
- Impacts analyzed under both Climate Change Phase II and Grid in Transition resource sets
 - Climate Change Phase II resource set includes significant increase in transmission capacity across NY State along with increases in renewable resources
 - Grid in Transition does not add transmission capacity, but increases both dispatchable generation and renewable resources

Types of Modeled Climate Disruptions

- 1. Temperature Waves
 - Coordinated impact to load, generation, and transmission due to severe temperatures across New York State
 - Calibrated to historical heat and cold waves, adjusted for average temperature increases due to climate change (from Phase I study modeling)
- 2. Wind Lulls
 - Multi-day reductions in wind output without effects on other resource types
 - Calibrated to historical periods of low wind production across state
- 3. Severe Storms
 - Combined load, generation, and transmission effects, requiring repair/recovery over multiple weeks
- 4. Other Impacts
 - Reduction in water availability for hydro units due to droughts

AG ANALYSIS GROUP | Climate Disruption Case Discussion

Climate Disruption Revised Case List

Cases were run based on relevance to each season and resource set

		Climate Change Phase II Resource Set						Grid in Transition Resource Set			
		CLCPA			Reference			CLCPA		Reference	
ID	Event	Summer	Winter	Shoulder	Summer	Winter	Shoulder	Summer	Winter	Summer	Winter
Baseline	None	x	Х	Х	Х	Х	Х	Х	Х	Х	Х
A	Heat Wave	Х			Х			х			
В	Cold Wave		Х			Х			Х		
С	Wind Lull - Upstate	x	Х		х	Х		x	Х		
D	Wind Lull - Off-Shore	x	Х		x	Х		x	Х		
Е	Wind Lull - State-Wide	x	Х		х	Х		x	Х		
F	Hurricane/Coastal Wind Storm	x			х			x			
G	Severe Wind Storm – Upstate	x	Х		х	Х		x	Х		
н	Severe Wind Storm – Offshore	x	Х	Х	x	Х		x	Х		
I	Drought	x			x			x			
J	Icing Event		Х			Х			Х		

 AG
 ANALYSIS GROUP
 Climate Disruption Case Discussion

Climate Disruption Revised Case Details

ID	Event	Model Toggles Adjusted							
Baseline	None								
A	Heat Wave	Wind Generation - 20% decrease for 7 days Solar Generation - Use solar profile from hottest day in Y2006 for 7 days Load - High temp 90° F or above for days 1-7, with daily zonal load increase of between 0% to 18.7° Transmission - 5% decrease for 7 days							
В	Cold Wave	Solar Generation - Use solar profile from coldest day Load - Low temp of 0° F or below for days 1-7, with							
		Summer	Winter						
С	Wind Lull - Upstate	Wind Generation - 15% Average Capacity Factor in Zones A-E for 12 days	Wind Generation - 25% Average Capacity Factor in Zones A-E for 7 days						
D	Wind Lull - Off-Shore	Wind Generation - 15% Average Capacity Factor in Zones J-K for 12 days	Wind Generation - 25% Average Capacity Factor in Zones J-K for 7 days						
E	Wind Lull - State-wide	Wind Generation - 15% Average Capacity Factor in Zones A-K for 12 days	Wind Generation - 25% Average Capacity Factor in Zones A-K for 7 days						
F	Hurricane/Coastal Wind Storm	Calibrated using Hurricane Sandy data Load - 30% decrease in Zones G-K for 1 day with 11 Transmission - Off in Zones G-K for 1 day with 14 da Wind Generation - Off in Zones J-K for 1 day with 14 Solar Generation - 50% decrease in Zones G-K for 1 Dispatchable - 40% decrease in Zones G-K for 1 da	ay recovery day recovery day with next day recovery						
G	Severe Wind Storm – Upstate	Calibrated using Hurricane Sandy data Load - 30% decrease in Zones A-F for 1 day with 11 Transmission - Off in Zones A-F for 1 day with 14 da Wind Generation - Off in Zones A-F for 1 day with 14 Solar Generation - 50% decrease in Zones A-F for 1 Dispatchable - 40% decrease in Zones A-F for 1 day	ay recovery 4 day recovery day with next day recovery						
Н	Severe Wind Storm – Offshore	Wind Generation - Off in Zones J-K for 1 day with 14							
I	Drought	Hydro Generation - 50% decrease for 30 days							
J	Icing Event	Transmission - Off in Zones A-C for 1 day with 7 day Load - 25% decrease in Zones A-C for 1 day with 7 Wind Generation - 50% decrease in Zones A-C for 1	day recovery						

AG ANALYSIS GROUP

Historical Calibration: Temperature Waves

Historical Calibration: Temperature Waves

AG ANALYSIS GROUP Historical Calibration: Temperature Waves

Definitions of Temperature Waves

- Periods of extreme heat or cold can have coordinated impacts on system due to:
 - Increased Load
 - Changes in Wind Generation
 - Changes in Solar Generation
 - Changes in Transmission Capacity
- Heat waves defined as periods of 3 or more consecutive days where daily high temperatures are ≥90° F
- Cold waves defined as 3 or more consecutive days where daily low temperatures are ≤0° F

AG ANALYSIS GROUP Historical Calibration: Temperature Waves

System Effects of Temperature Waves

- Increased Load
 - Load impacts from temperature waves (both heat and cold) based on zonal loadtemperature sensitivities from Climate Impact Phase I modeling
- Wind Generation
 - Evidence from European heat wave of 2018 showed wind resource 20% below longterm averages; 20% wind capacity factor decrease modeled
- Solar Generation
 - In heat waves, solar irradiance increases relative to long-term averages but PV efficiency decreases
 - In cold waves, solar irradiance variable but there is no impact on PV efficiency
 - To model dual effect during temperature wave periods, study uses zonal-aggregated National Renewable Energy Laboratory (NREL) PV output data from the hottest and coldest days in 2006
- Transmission Capacity
 - Heat waves decrease transmission capacity due to conductor sag; 5% transmission MW transfer capability decrease modeled

AG ANALYSIS GROUP

Historical Calibration: Severe Wind Lulls

Historical Calibration: Severe Wind Lulls

Historical Calibration: Severe Wind Lulls

Summer Wind Lulls

- Extremely low wind production over multiple days can present reliability concerns during peak load periods
- Study reviewed NREL implied turbine capacity factor data for 100m height in 4 representative regions for NY State from 2007-2012
- Summer lulls are not uncommon; 19 lulls of more than 4 consecutive days with less than 20% state-wide average wind capacity in 2007-2012 data

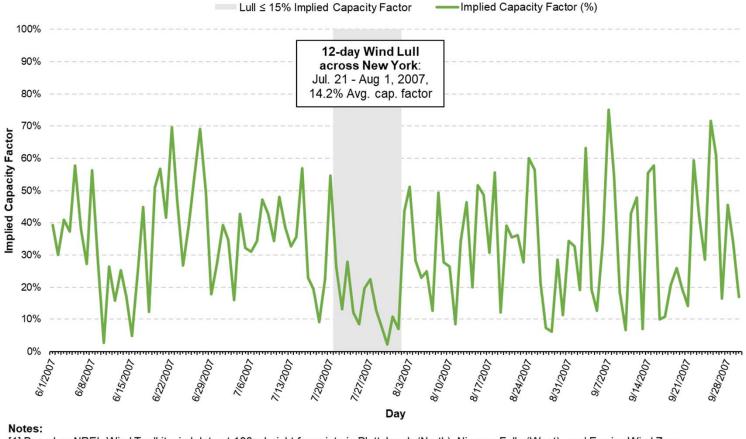
NREL Wind Profile Summer Lulls, 2007-2012 ≤15% Implied Capacity Factor

		Average Wind Capacity Factor
Wind Lull Period	Number of Days	Across Regions
7/21/2007 - 8/1/2007	12	14.2%
8/10/2009 - 8/16/2009	7	14.1%
6/10/2009 - 6/16/2009	7	13.7%
8/31/2009 - 9/5/2009	6	13.3%
7/27/2012 - 8/1/2012	6	14.4%
8/12/2008 - 8/16/2008	5	14.9%
7/6/2009 - 7/10/2009	5	14.3%
7/9/2012 - 7/13/2012	5	14.4%
8/18/2012 - 8/22/2012	5	14.7%
NI - 4		

Notes:

[1] Based on NREL Wind Toolkit wind data at 100m height for points in Plattsburgh (North), Niagara Falls (West), and Empire Wind Zone.

[2] A wind lull is defined as 4 or more consecutive days where the average daily implied capacity factor is less than or equal to 15%.[3] In addition to the listed wind lulls, there were 10 wind lulls of 4 days between 2007 - 2012.


ANALYSIS GROUP

AG

Historical Calibration: Severe Wind Lulls

Summer Wind Lull Example

June - September Average Daily Wind Shape Average Across Three Regions Summer 2007

[1] Based on NREL Wind Toolkit wind data at 100m height for points in Plattsburgh (North), Niagara Falls (West), and Empire Wind Zone. [2] A wind lull is defined as 4 or more consecutive days where the average daily implied capacity factor is less than or equal to 15%. AG ANALYSIS GROUP

Historical Calibration: Severe Wind Lulls

Winter Wind Lulls

- Winter coordinated wind lulls less common but more important due to increased reliance on wind in 2040 scenarios
- CLCPA load scenarios are winterpeaking, so wind lulls have outsized impact

NREL Wind Profile Winter Lulls, 2007-2012 ≤25% Implied Capacity Factor

Wind Lull Period	Number of Days	Average Wind Capacity Factor Across Regions
2/25/2007 - 3/1/2007	5	21.7%
1/28/2011 - 2/1/2011	5	22.5%
2/2/2012 - 2/5/2012	4	24.3%

Notes:

[1] Based on NREL Wind Toolkit wind data at 100m height for points in Plattsburgh (North), Niagara Falls (West), and Empire Wind Zone.

[2] A wind lull is defined as 4 or more consecutive days where the average daily implied capacity factor is less than or equal to 25%.

Historical Calibration: Severe Wind Lulls

Localized Wind Lulls

- In addition to state-wide wind lulls, landbased and offshore wind capacity may experience unsynchronized low wind conditions
- Between 2007-2012, there were 35 days (occurring in all season) where upstate implied wind capacity factor was >75% and offshore implied capacity factor was <25% or vice versa

Extreme Wind Differences Between Upstate and Offshore
Wind, 2007 - 2012

...

	Days with High Upstate	Days with High Upstate
	Capacity Factor, Low	Offshore Factor, Low
Month	Offshore Capacity Factor	Upstate Capacity Factor
Jan	3	0
May	3	2
Jun	2	0
Jul	1	0
Aug	2	1
Sep	1	3
Oct	3	8
Nov	3	2
Dec	1	0
Total	19	16

Notes:

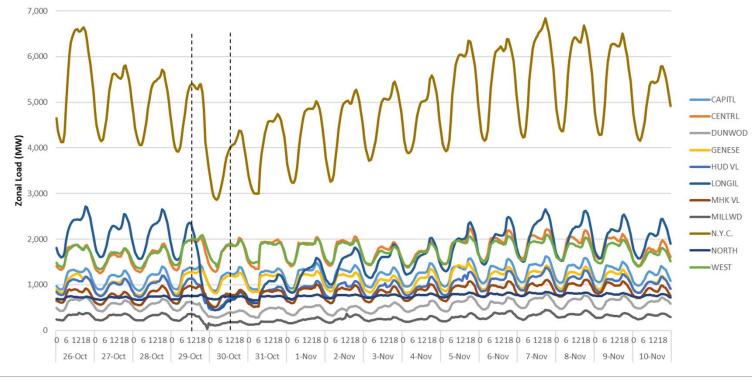
[1] Based on NREL Wind Toolkit wind data at 100m height for points in Plattsburgh (North), Niagara Falls (West), and Empire Wind Zone.
[2] "High capacity factor" is defined as greater than or equal to 75% capacity factor, while "low capacity factor" is defined as less than or equal to 25% capacity factor.

Wind Lulls in Climate Disruption Cases

- Modeled wind lulls are calibrated to historical values
 - Summer wind lulls modeled as 15% average wind capacity factor for 12 days
 - Winter wind lulls modeled as 25% average wind capacity factor for 7 days
- Wind lulls are constructed to overlap with the 12- and 7-day periods of highest load for each season (including the peak load day)
- Study models statewide wind lulls and localized wind lulls in upstate and offshore regions

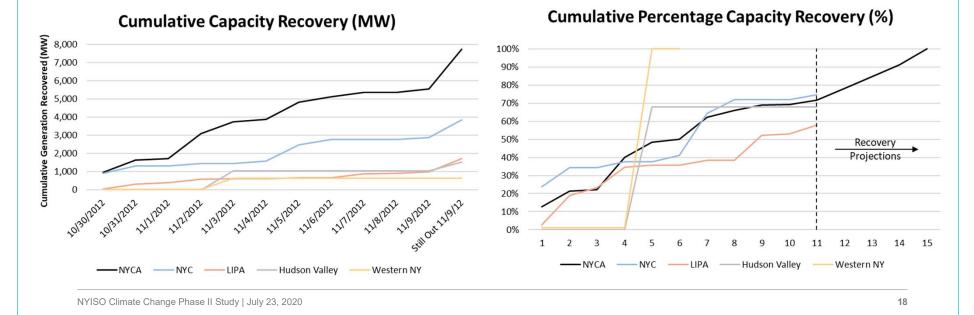
AG ANALYSIS GROUP

Historical Calibration: Hurricane Impact

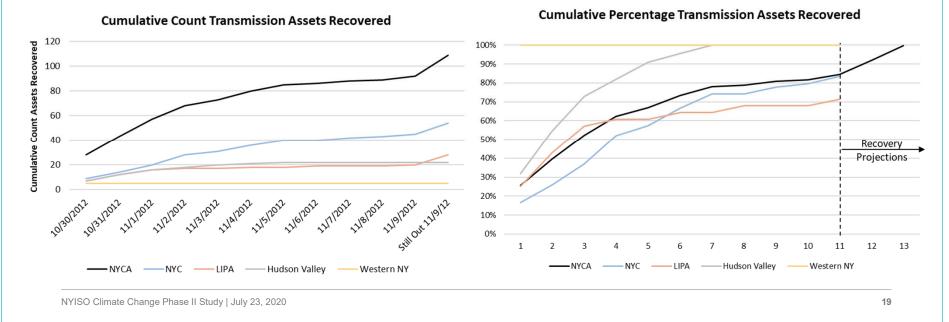

Historical Calibration: Hurricane Impact

Historical Coastal Storm Impact (Hurricane Sandy)

- Severe storm impacts with sustained recovery period of multiple days/weeks could lead to reliability concerns across entire state, not just directly impacted area
- Storm scenarios based on historical observations from 2013 NYISO Hurricane Sandy report and load data from period of Hurricane Sandy and immediate aftermath
- Hurricane Sandy caused impacts on:
 - Load
 - Fossil Generation
 - Transmission


Historical Coastal Storm Load Impact

- Large load impact on NYC and Long Island during the course of storm (10/29/12 10/30/12, shown below with dashed line) with a nearly linear recovery
- Nearly complete load recovery the weekend by Nov. 10 (a period of 11 days)
- Marginal decrease in load in upstate zones during the storm, but overall upstate load remained consistent


Historical Coastal Storm Generation Impact

- Generation impact was primarily on nuclear and fossil units downstate
- On the first day after the storm, ~20% of NYCA nameplate capacity was offline, and ~40% of Zone J/K capacity was offline
- By day 11 (last day in study), ~30% of capacity was still offline; based on average pace of recovery, full capacity would have been online around Day 15
- Limited evidence of effects on renewable generation given fewer installations in 2012
 - Some wind generation damage would be expected given current turbine storm ratings
 - Solar panels generally rated for ~140 mph winds; max gusts ~100 mph in Sandy

Historical Coastal Storm Transmission Impact

- Transmission impact was severe downstate and affected both interstate and intrastate transmission lines
- According to the NYISO report, "Essentially, the seven southernmost interconnections to southeastern New York were disconnected, leaving Long Island and New York City only connected to the Eastern Interconnection via the Lower Hudson Valley 345 kV transmission lines."
- By Day 11 (last day in study), ~15% of transmission assets still offline; based on average pace of recovery, full capacity would have been online around Day 13

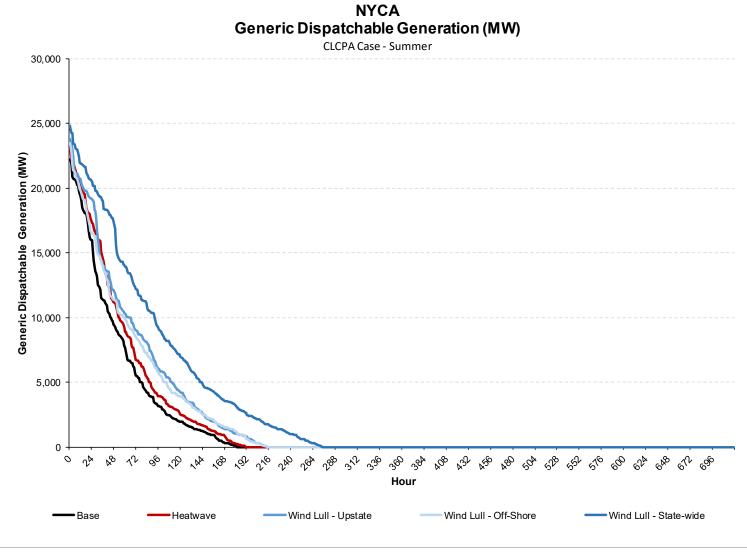
Historical Coastal Storm Impact (Hurricane Sandy)

- Model setup for coastal storm scenario:
 - Load: 30% reduction in load in zones impacted; 11 day linear recovery period
 - Transmission: cut off transmission lines to downstate zones (G-K); 14 day linear recovery period
 - Generation:
 - Wind generation off in zones impacted (offshore and onshore) during 1-day storm;
 14 day linear recovery period
 - Solar generation at 50% in zones impacted during 1-day storm; next day recovery
 - Reduction of dispatchable generation downstate (Zones G-K) by 40% based on the generation capacity losses from the NYISO report; linear recovery of 14 days
- Upstate storm scenarios use same magnitude of effects, with change in geographic center of storm damage

AG ANALYSIS GROUP

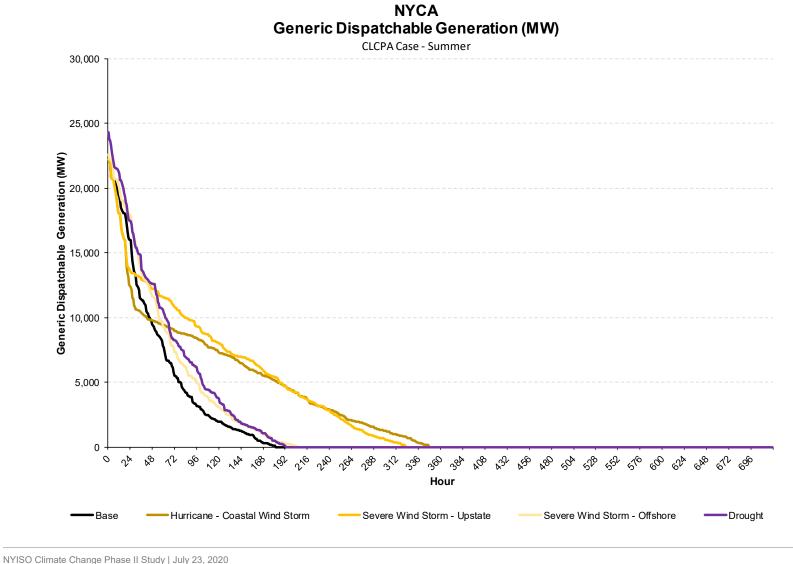
Preliminary Results with Climate Change Phase II Resource Set

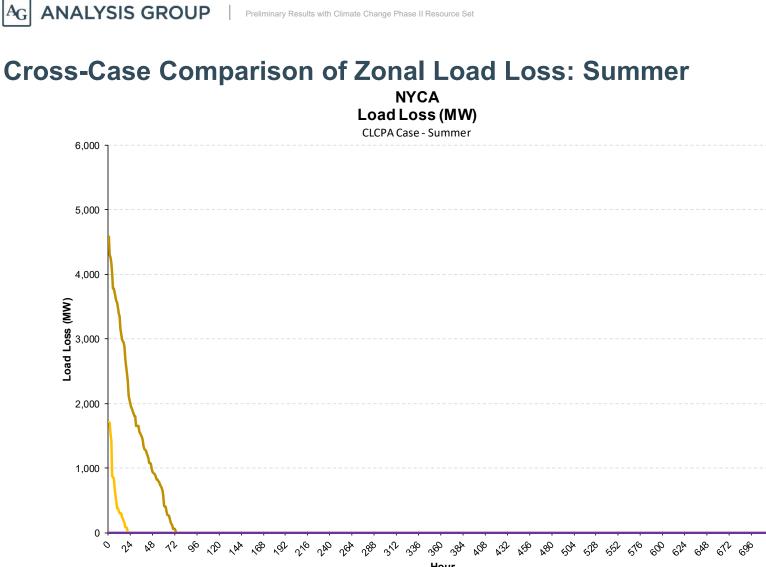
Preliminary Results with Climate Change Phase II Resource Set


Preliminary Findings using CLCPA Summer Cases

- Loss of load rare because resource set is built to meet winter peak
- Losses of load at transmission system level and required dispatchable generation occur in storm cases with transmission disruptions

	Loss of	Load	Dispatchable Generation							
	Total Hours with		Max Consecutive	Total Hours with	Aggregate	Max	Max 1-hr.			
	LOL in at least one	Aggregate LOL	Hours with	Dispatchable	Dispatchable	Dispatchable	Dispatchable			
	Load Zone	(MWh)	Dispatchable Gen.	Gen.	Gen. (MWh)	Gen. (MW)	Gen. Ramp (MW)			
CLCPA Summer Scenario - Climate	Impact Phase II Reso	urce Set								
Baseline Summer	0	0	36	181	1,159,404	22,245	10,117			
Heat Wave	0	0	36	191	1,354,972	23,225	8,072			
Wind Lull - Upstate	0	0	38	214	1,592,818	23,782	10,117			
Wind Lull - Off-Shore	0	0	40	216	1,502,020	23,469	10,117			
Wind Lull - State-Wide	0	0	41	274	2,210,826	24,821	10,117			
Hurricane/Coastal Wind Storm	28	20,279	171	349	2,072,911	22,245	6,222			
Severe Wind Storm – Upstate	8	1,721	87	322	2,213,628	22,245	6,222			
Severe Wind Storm – Offshore	0	0	36	205	1,400,864	22,570	8,202			
Drought	0	0	37	193	1,495,695	24,304	7,282			




Cross-Case Comparison of Dispatchable Generation: Summer

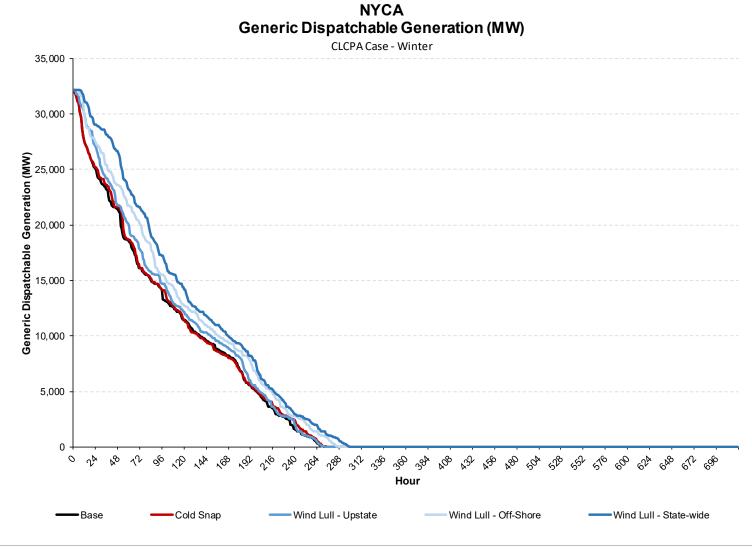
Cross-Case Comparison of Dispatchable Generation: Summer

 Hour

 Base
 Heatwave

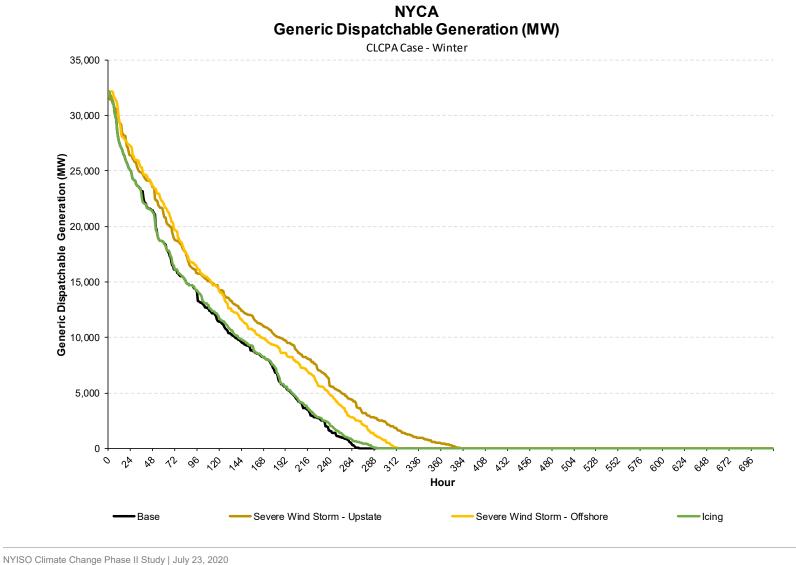
 Wind Lull - Off-Shore
 Wind Lull - State-wide

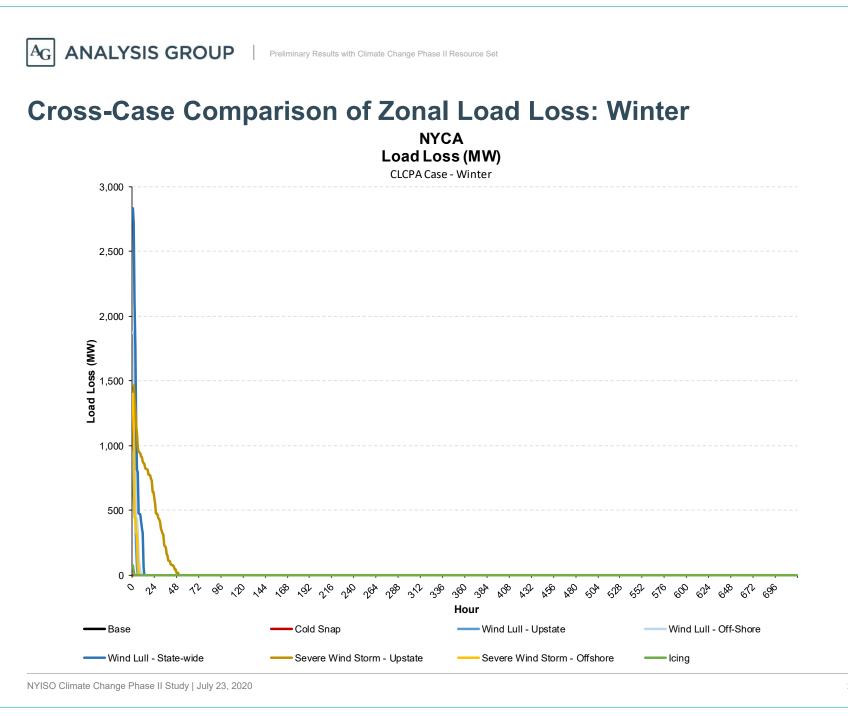
 Severe Wind Storm - Upstate
 Severe Wind Storm - Offshore


Preliminary Findings using CLCPA Winter Cases

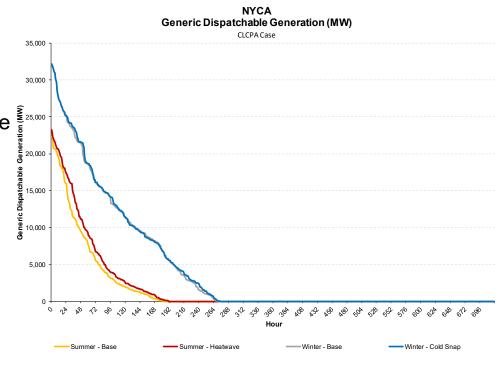
- Wind Iull scenarios cause some losses of load, even without transmission impacts
- Acute losses of load and required dispatchable generation occur in storm cases with transmission disruptions
- Almost all scenarios require at least one hour with max output of 32,136 MW from dispatchable generation, by definition of resource set (dispatchable generation is amount required to exactly meet load in all hours in baseline CLCPA winter scenario)

	Loss of	Load	Dispatchable Generation							
	Total Hours with LOL in at least one Aggregate LOL Load Zone (MWh)		Max Consecutive Hours with Dispatchable Gen.	Total Hours with Dispatchable Gen.	Aggregate Dispatchable Gen. (MWh)	Max Dispatchable Gen. (MW)	Max 1-hr. Dispatchable <u>Gen. Ramp (MW)</u>			
CLCPA Winter Scenario - Climate I	rce Set									
Baseline Winter	0	0	85	272	3,167,828	32,136	12,583			
Cold Wave	0	0	85	275	3,210,585	32,136	12,583			
Wind Lull - Upstate	6	2,805	85	273	3,379,007	32,136	12,583			
Wind Lull - Off-Shore	10	7,112	104	288	3,658,990	32,136	12,583			
Wind Lull - State-Wide	13	14,317	110	300	3,953,931	32,136	12,583			
Severe Wind Storm – Upstate	50	28,601	103	382	4,142,431	31,957	12,583			
Severe Wind Storm – Offshore	8	4,117	103	315	3,913,116	32,136	12,583			
Icing Event	2	106	85	293	3,217,483	32,136	12,583			

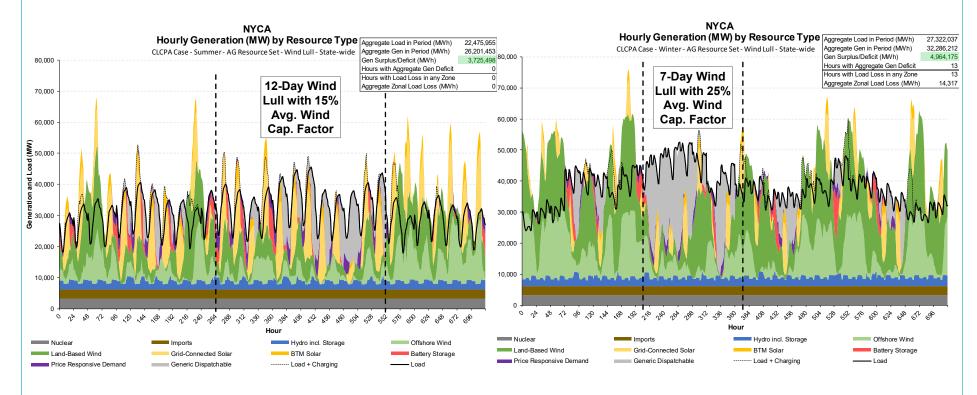

 In all cases, peak dispatchable ramp occurs on day 27 of the modeling period due to a short-term wind lull AG ANALYSIS GROUP | Preliminary Results with Climate Change Phase II Resource Set


Cross-Case Comparison of Dispatchable Generation: Winter

AG ANALYSIS GROUP Preliminary Results with Climate Change Phase II Resource Set

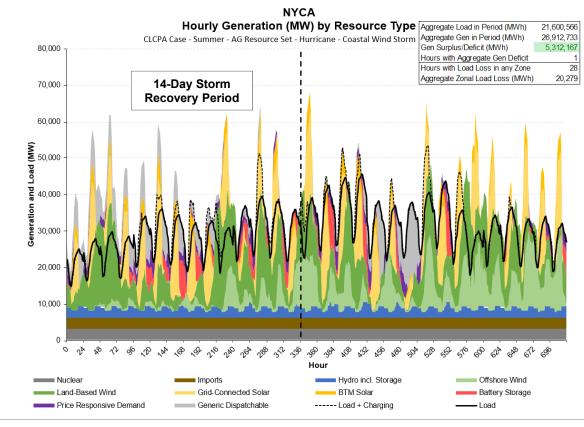

Cross-Case Comparison of Dispatchable Generation: Winter

Trends Across Temperature Wave Cases


- Heat/cold waves show no losses of load; dispatchable generation and transmission are sufficient to meet load in all hours
- Increased load response to high temperatures mean heat waves have greater impact on loads than cold waves
- More severe modeled temperature waves may lead to increased stresses on system

ANALYSIS GROUP Preliminary Results with Climate Change Phase II Resource Set

Trends Across Wind Lull Cases


- Increased solar generation during summer wind lulls offset losses of wind output, and result in no summer loss of load events
- Winter wind lulls lead to reliance on dispatchable generation during lull periods and small loss of load events

AG

Trends Across Storm Cases: Summer

- Hurricane/major wind storms cause loss of load (at transmission system level) during storm and 14day recovery period, but ease significantly once transmission is partially restored
- Loss of transmission in downstate zones prevents batteries and dispatchable generation in upstate zones from relieving loss of load downstate during early recovery period

NYISO Climate Change Phase II Study | July 23, 2020

AG

AG ANALYSIS GROUP

Preliminary Results with Grid in Transition Resource Set

Preliminary Results with Grid in Transition Resource Set

Preliminary Findings using CLCPA Summer Cases

- Significant reliance on dispatchable generation across all cases (>70% of hours have some dispatchable generation used in baseline case)
- Losses of load occur in storm cases with transmission and dispatchable generation disruptions

	Loss of	Load	Dispatchable Generation							
	Total Hours with		Max Consecutive	Total Hours with	Aggregate	Max	Max 1-hr.			
	LOL in at least one	Aggregate LOL	Hours with	Dispatchable	Dispatchable	Dispatchable	Dispatchable			
	Load Zone	(MWh)	Dispatchable Gen.	Gen.	Gen. (MWh)	Gen. (MW)	Gen. Ramp (MW)			
CLCPA Summer Scenario - Grid in	Transition Resource S	et								
Baseline Summer	0	0	98	512	4,198,131	27,075	5,938			
Heat Wave	0	0	98	523	4,498,791	28,100	5,938			
Wind Lull - Upstate	0	0	98	516	4,517,346	28,807	6,382			
Wind Lull - Off-Shore	0	0	227	544	5,001,691	28,360	6,007			
Wind Lull - State-Wide	0	0	227	544	5,339,716	30,794	7,569			
Hurricane/Coastal Wind Storm	24	20,463	240	560	4,849,592	27,075	5,938			
Severe Wind Storm – Upstate	24	19,741	172	549	5,016,534	27,075	5,938			
Severe Wind Storm – Offshore	0	0	171	556	5,142,130	27,932	5,938			
Drought	0	0	102	519	4,630,408	28,992	7,170			

 In all cases, peak dispatchable ramp occurs on the peak hour of day 19 of the modeling period

Comparison of CLCPA Summer Results between Resource Sets

- Greater amounts of dispatchable generation used across all CLCPA climate disruption cases under Grid in Transition resource set
- Upstate storm scenario has greater losses of load under Grid in Transition resource set, due to more limited transmission during storm recovery period

		Clima	ate Impact Phase II	Resource Set		Grid in Transition Resource Set					
	Total Hours with LOL in at least one	Aggregate	Total Hours with Dispatchable	Aggregate Dispatchable	Diff. in Dispatchable Gen. from	Total Hours with LOL in at least one	Aggregate	Total Hours with Dispatchable	Aggregate Dispatchable	Diff. in Dispatchable Gen. from	
	Load Zone	LOL (MWh)	Gen.	Gen. (MWh)	Baseline (MWh)	Load Zone	LOL (MWh)	Gen.	Gen. (MWh)	Baseline (MWh)	
CLCPA Summer Scenario											
Baseline Summer	0	0	181	1,159,404	+0	0	0	512	4,198,131	+0	
Heat Wave	0	0	191	1,354,972	+195,568	0	0	523	4,498,791	+300,660	
Wind Lull - Upstate	0	0	214	1,592,818	+433,414	0	0	516	4,517,346	+319,215	
Wind Lull - Off-Shore	0	0	216	1,502,020	+342,616	0	0	544	5,001,691	+803,560	
Wind Lull - State-Wide	0	0	274	2,210,826	+1,051,422	0	0	544	5,339,716	+1,141,585	
Hurricane/Coastal Wind Storm	28	20,279	349	2,072,911	+913,507	24	20,463	560	4,849,592	+651,461	
Severe Wind Storm – Upstate	8	1,721	322	2,213,628	+1,054,224	24	19,741	549	5,016,534	+818,403	
Severe Wind Storm – Offshore	0	0	205	1,400,864	+241,460	0	0	556	5,142,130	+943,999	
Drought	0	0	193	1,495,695	+336,291	0	0	519	4,630,408	+432,277	

Preliminary Findings using CLCPA Winter Cases

- >60% of hours have some dispatchable generation used in all cases
- Wind lull scenarios cause no loss of load, due to available dispatchable generation

	Loss of	Load	Dispatchable Generation							
	Total Hours with LOL in at least one Aggregate LOL Load Zone (MWh)		Max Consecutive Hours with Dispatchable Gen.	Total Hours with Dispatchable Gen.	Aggregate Dispatchable Gen. (MWh)	Max Dispatchable Gen. (MW)	Max 1-hr. Dispatchable <u>Gen. Ramp (MW)</u>			
CLCPA Winter Scenario - Grid in Ti										
Baseline Winter	0	0	104	461	6,162,565	39,539	11,645			
Cold Wave	0	0	104	467	6,281,603	39,539	11,645			
Wind Lull - Upstate	7	6,367	110	470	6,317,654	39,758	12,061			
Wind Lull - Off-Shore	5	1,092	168	488	6,844,813	39,758	11,540			
Wind Lull - State-Wide	8	10,000	124	487	6,997,633	39,758	11,693			
Severe Wind Storm – Upstate	51	57,658	111	554	6,715,584	38,503	11,540			
Severe Wind Storm – Offshore	2	108	120	562	7,925,848	39,758	11,540			
Icing Event	24	11,247	104	481	6,154,836	39,539	11,645			

 In all cases, peak dispatchable ramp occurs on day 12 of the modeling period, the peak day of winter load

Comparison of CLCPA Winter Results between Resource Sets

- Greater amounts of dispatchable generation in Grid in Transition resource set during wind lull cases but similar or reduced number of loss of load events
- Reduced transmission under Grid in Transition resource set leads to additional load losses during scenarios that affect upstate resources (Severe Wind Storm – Upstate and Icing Event)

		Clim	ate Impact Phase II	Resource Set		Grid in Transition Resource Set				
	Total Hours				Diff. in	Total Hours				Diff. in
	with LOL in		Total Hours with	Aggregate	Dispatchable	with LOL in		Total Hours with	Aggregate	Dispatchable
	at least one	Aggregate	Dispatchable	Dispatchable	Gen. from	at least one	Aggregate	Dispatchable	Dispatchable	Gen. from
	Load Zone	LOL (MWh)	Gen.	Gen. (MWh)	Baseline (MWh)	Load Zone	LOL (MWh)	Gen.	Gen. (MWh)	Baseline (MWh)
CLCPA Winter Scenario										
Baseline Winter	0	0	272	3,167,828	+0	0	0	461	6,162,565	+0
Cold Wave	0	0	275	3,210,585	+42,757	0	0	467	6,281,603	+119,038
Wind Lull - Upstate	6	2,805	273	3,379,007	+211,179	7	6,367	470	6,317,654	+155,089
Wind Lull - Off-Shore	10	7,112	288	3,658,990	+491,162	5	1,092	488	6,844,813	+682,248
Wind Lull - State-Wide	13	14,317	300	3,953,931	+786,103	8	10,000	487	6,997,633	+835,068
Severe Wind Storm – Upstate	50	28,601	382	4,142,431	+974,603	51	57,658	554	6,715,584	+553,019
Severe Wind Storm – Offshore	8	4,117	315	3,913,116	+745,288	2	108	562	7,925,848	+1,763,283
Icing Event	2	106	293	3,217,483	+49,655	24	11,247	481	6,154,836	-7,729

AG ANALYSIS GROUP Preliminary Conclusions

Preliminary Findings

AG ANALYSIS GROUP Preliminary Conclusions

Cross-Scenario Trends

- Temperature Waves
 - Periods of extreme temperature lead to additional usage of generic dispatchable generation but not losses of load
- Wind Lulls
 - Even assuming large amounts of new renewables and transmission, coordinated multi-zone lulls in wind production will place stress on system that will need to be met with generic dispatchable capacity
 - Wind lulls have greatest impact in winter, when loads are highest in the CLCPA load scenario
- Severe Storms
 - Load losses are localized given sufficient storage and generic dispatchable generation, and ease once transmission is partially restored
 - Quick recovery of damaged transmission is key to limiting load losses by allowing resources in unaffected zones to offset lost generation in affected zones

AG ANALYSIS GROUP Contact

Contact

Paul Hibbard, Principal Paul.Hibbard@analysisgroup.com Charles Wu, Manager Charles.Wu@analysisgroup.com